PARAMETRIC METHOD IN THE THEORY OF AN
UNSTEADY BOUNDARY LAYER
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An approximate calculation method is described for an unsteady laminar boundary layer in
an incompressible liquid. The method is based on the integration of a "universal" equation.

Several investigators have applied the parametric method of Loitsyanskii [1] to problems involving an
unsteady laminar boundary layer in an incompressible liquid [2-4]. The case treated in [2, 3] was that in
which the velocity at the outer boundary of the boundary layer is written as the product of two functions,
one of which depends on the longitudinal coordinate while the other depends only on the time. The solution
in [4], on the other hand, which holds for an arbitrary velocity function, incorporates a departure from
rigor (justified only indirectly) involving the absence of a compatibility condition for the equations for
the transverse scale in the boundary layer., Below we describe a parametric calculation method for an
unsteady laminar boundary layer based on a "universal” equation which is valid for a broad class of veloci-
ties at the outer boundary of the boundary layer.

The stream function y for a plane, unsteady, laminar boundary layer in an incompressible liquid is
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Here and below, the prime and dot denote partial derivatives with respect to x and t, respectively, Re~
writing (1) in terms of the new variables
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where B is a normalization constant; and h(x, t) is a scale transverse linear dimension in the boundary
layer, we find (z = h%/v):
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The boundary conditions in terms of the variables x and t [the last lines in Egs. (1)] are used only in
the last step of the solution.

We also introduce a momentum equation for the unsteady boundary layer:
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We consider the dirhensionless characteristic functions
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We introduce the series of parameters
orrnl
=UFL T Pk on=0,1,2, ... (9)
fin axtoL ( )
and the constant parameter
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where this constant can take on various values. The set of these independent parameters reflects the nature
of the velocity change in the external flow and, in integral form (through z and z), the history of the motion
in the boundary layer. Using these parameters we can transform differential equation (3) to a universal
form in the sense that neither the equation itself not its boundary conditions depend explicitly on U(x, t);

we can write the solution of the equation in the form

'g__ = CD(TL fhn’ g), (11)

or, for the stream function
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The universal equation can be derived in the following manner: transforming to the new independent

variables 1, fin in Egs. (3) and (4), after first calculating the derivatives in them, we find
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The derivatives of the parameters with respect to x and t in these equations are calculated by dif-
ferentiating (9). We find
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Here D{fxn; Uz') and E(fiy; g) denote the quantities in the corresponding brackets in the resulting equations.
Using (9), (10), (13), and (14), we can rewrite (3) as
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To cast this equation in universal form we eliminate the quantity Uz' by means of momentum equa-
tion (4), which we transform in the following manner: after the transformation to the new variables, the
quantities H*, H**, and ¢ in (7) become functions of the parameters fy, and g alone. Then, carrying out

transformations analogous to (13) in (8), along with some other straightforward manipulations, we reduce
momentum egquation (4) to the form
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From Eq. (16) we find
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Now using (17) we can rewrite (15) as
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where ¢;(n) is the Blasius solution for a steady-state boundary layer on a plate

The resulting equation and the boundary conditions do not contain U(x, t) explicitly and in this sense
are "universal." This equation is exact for a broad class of velocities U{x, t), for which z = At + C{x),
where A is an arbitrary constant and C(x) is some function of the longitudinal coordinate. This latter de-
pendence corresponds, in particular, to that, h ~ Vi, which is customarily used in the "exact" solution
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Equation (18) can be integrated in the m-parameter approximation once and for all. The resulting
characteristic functions can be used to find an approximate solution for problems involving an arbitrary
specified velocity U(x, t), expressed in terms of a sufficiently smooth function.,

Before integrating we should choose some typical value as the scale value of the transverse coordinate
h, t) in the boundary layer. In our case it is convenient to set h = §**; then according to (6) we have H**
=1 and H* = 6* /6** = H, and Eq. (17) becomes
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In the case of a steady-~state boundary layer, in which all the unsteady parameters, including g,
vanish, Eq. (18) with (19) becomes the universal equation given by Loitsyanskii [1].

Equation (18) was solved in the locally three-parameter approximation; the parameters fy,, fy, and g
were retained, while the other parameters and the derivatives with respect to all parameters fi,, were
discarded. In this case Eq. (18) is
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where ¢,(n) is the Blasius solution for a steady-state boundary layer on a plate. In fact, if we set fj, = fy
=g =0, we find that (20) becomes
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and if we set B = £y it becomes the familiar Blasius equation. It follows that the normalization constant
must be B = 0,47,

The functional F in Eq. (20) is calculated in this approximation on the basis of Eq. (19); specifically,
we use the equation

F (1 Fos ) =U2 = 2[L—f1,(2+ H)—(fo — g/2) HI. (21)

In integrating Eq. (20) on a BESM~2 computer, we use the pivotal condensation method with itera-
tions. Figure la and b illustrate the results with plots of the characteristic functions ¢, ¥, and H as
functions of the parameter f), for certain values of the parameters fy; and g. It follows from these curves
that the position of the flow-separation point is a strong function of the magnitude and sign of the unsteady-
state parameter fy;, which is a measure of the relative local acceleration in the external flow of the bound-
ary layer. As the positive acceleration is increased, the possibility for the occurrence of separation in the
divergent region decreases; on the other hand, at large negative accelerations, separation of the boundary
layer can occur at the plate and even in the convergent region. The influence of the parameter g on the
characteristic functions ¢ in H is slight, evident only in the separation region. As the parameter g in-
creases, the friction increases, and the region of separation-free flow expands. In the case of an arbi-
trary unsteady motion of the object, with fj; = 0 and g # 0, the characteristics of the boundary layer are
governed primarily by the parameter f;;.

In solving a specific problem with a specified velocity distribution U(x, t) at the outer boundary of
the boundary layer, we should use momentum equation (19) in the locally three-parameter approximation.
The functional F (fjy; £;; g) is given by Eq. {21); according to the results of the integration which is carried
out once and for all in this approximation, this functional can be approximated by the function

F = ay =+ ayf 1y -+ afo; - a8, (22)

where the coefficients ay, a,, a3, and a4 are in turn functions of the parameters. Using the expressions for
the parameters, and using (22), we write (21) as
’ N L U 23)
UZ —az = {aU' + ag—— )z +ay. (
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Fig. 1. a) Reduced friction coefficient and characteristic function
as functions of the parameters f;; and g for a constant values of the
parameter £ = 0.1; b) as functions of the parameters fj, and fy for
a constant value g = 0.05.

According to the last lines in system (1), the boundary and initial conditions for Eq. (23) are

z= t =
z=2z,() at x=x, (24)
z=2z¢(x) at f=1,.

Equation (23) is nonlinear, so that, in general, it must be solved approximately. However, if the
values of the parameters are small, we can use Eq. (22) to approximate the unsteady functional F by a
linear function with the following coefficients:

a, =044, a,=—>5.35, a;=—165 g, =—21.

The coefficients are calculated as the average values over the parameter ranges, —~0.1 = f; = 0, 1and —0.2
= g = 0.2 and over the range of f;, from its value at the separation point to its value at F = 0. The devia-
tion of the coefficients from their average values in these parameter ranges does not exceed 3-12%. Then
Eq. (23) becomes linear, and it becomes a simple matter to solve this equation, determine z (x, t) and

'z(x, ty, and find the parameter values

. U .
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corresponding to the specified velocity U(x, t}). Then the reduced friction ¢ can be found by means of {ables,
graphs, or the approximating function ¢ = ¢({fj; fo15 2)-

We note that refinement of the solution of this problem involves solving a nonlinear equation; further-
more, the refinement requires a more rigorous determination of the characteristic functions. This can be
achieved by integrating Eq. (18), retaining the derivatives with respect to the parameters fj; and fy;, and
then, if the computer memory permits, retaining the derivatives with respect to the subsequent param-
eters in the series fi.,. However, satisfactory results can be achieved on the basis of the linearized equa-
tion and by taking into accountonly the first parameters in the local approximation, as in the case of a
steady-state boundary layer [1]. The following concrete examples verify this assertion.

We consider the flow of a viscous liquid around an infinite plane, which is abruptly put into motion at
a velocity U (the Rayleigh problem). For this case Eq. (27) becomes

01 2 _ g4
dt

from which we find the parameters of this problem to be fj; = f3; = 0 andg=~ 0.21. Now, using available tables
or graphs, and converting to h = §*, we can easily determine the reduced friction: £ = 8(u/U)/8(y / 6%) ly=0
= 0.637, For comparison, Table 1 shows the results of the following solutions: the exact solution [5]; the
approximate single-parameter solutions of Rozin [6], in which the exact Hartree solutions (for a steady-
state boundary layer) or Watson solutions (the first approximation of the problem of the development of
the boundary layer) are used to calculate the characteristic functions; the approximate solution of Yang
[7]; and, finally, the approximate solution of Strumingkii [8], who generalized the Pohlhausen method

to the case of unsteady motion.
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TABLE 1. Values of the Reduced Friction on an Infinite
Surface which Is Abruptly Put into Motion According to
Various Calculation Methods

Bl

Solution method

~ Exact

|

| 0,637
Rozin method withthe Hartree solution 0,5715
Rozin method with the Watson solution ’ 0,637
Yang methad - ! 0,641
Struminskii method (generalization of the Pohihausen rnethod)\ 0,600
Method of the preseﬁt paper ] 0,637

We note that this example corresponds to the case of large local accelerations in the boundary layer,
so that the largest error comes from those methods in which families of steady-state velocity profiles
are used to determine the characteristic functions.

In general, in the problem of unsteady flow around a cylinder, nonlinear equation (23) should be

~ solved, since in this problem the dependence of the coefficients on the parameters in (22) turns out to be
important. A satisfactory result was found in calculating the time of separation dt a cylinder abruptly put
into motion by expanding the characteristic functions in series in terms of the parameters and then dis-
carding the nonlinear terms. This result is tg = 0.26 r /V; the result of the exact solution is tg = 0.32

I'/Vo.
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NOTATION

are the longitudinal and transverse coordinates in the boundary layer;
is the time;

is the dimensionless transverse coordinate;

is the velocity at the outer boundary of the boundary layer;

is the stream function; ' :

is the dimensionless stream function;

are the projections of the velocity in the boundary layer onto the x and y axes, respec-
tively;

is the liquid density;

are the dynamic and kinematic viscosity coefficients, respectively;

is the scale transverse coordinate in the boundary layer;

are the characteristic functions;
is the displacement length;

is the momentum-loss length;

is the surface-friction stress

is the reduced friction coefficient;
is the normalization factor;

are the dimensionless parameters;
is the cylinder radius,
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